

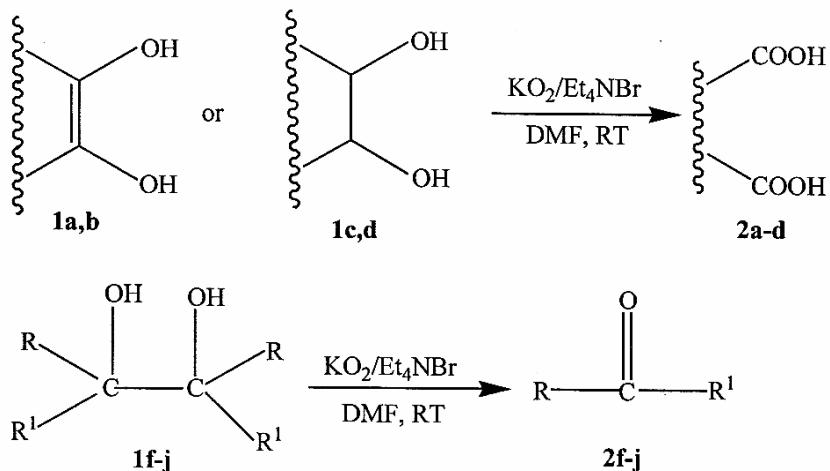
Note

An efficient C-C bond cleavage of 1,2-diols using tetraethylammonium superoxide

Krishna Nand Singh*, Rajesh Kumar &
Ajay Kumar Shukla

Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi 221 005, India
E-mail: knsinghbhu@yahoo.co.in

Received 7 November 2006, accepted (revised) 2 April 2007


Tetraethylammonium superoxide, generated *in situ* by the phase-transfer reaction of potassium superoxide and tetraethylammonium bromide in DMF, brings about an easy cleavage of vicinal diols and related dihydroxy arenes under mild reaction conditions, at room temperature.

Keywords: Tetraethylammonium superoxide, 1,2-diols, dihydroxy arenes, phase-transfer catalyst, cleavage reaction

The carbon-carbon bond fission of vicinal diols and related functional groups has attracted a great deal of recent interest in organic synthesis¹⁻⁵. The common and current reagents employed to effect this transformation are periodate⁶, permanganate⁷, osmium tetroxide⁷, ruthenium tetroxide^{8,9}, H₂O₂ /methyltrioxorhenium¹⁰, *N*-bromosuccinimide¹¹, chiral LTA¹², Mitsunobu conditions¹³, Cu-based catalyst¹⁴, gold catalyst¹⁵ and O₂/Co-*N*-hydroxyphthalimide¹⁶. Superoxide ion is an oxidising agent^{17,18} and potassium superoxide (KO₂) in the presence of 18-crown-6 has been used for the oxidation of hydroxyl- and ketopolyaromatics including internal quinines¹⁹⁻²¹. Oxidation of dihydroxynaphthalenes by KO₂ in heterogeneous aprotic media has also been carried out to afford mono- or dihydroxynaphthoquinones^{22,23}. The use of 18-crown-6 is, however, limited due to its high cost and carcinogenic character. In continuation to our research²⁴⁻²⁷ on superoxide ion and with a view to extending the applicability of tetraethylammonium bromide (Et₄NBr) as an inexpensive alternative to 18-crown-6, we report herein the use of *in situ* generated tetraethylammonium superoxide (Et₄NO₂) for a facile and mild cleavage of some vicinal diols and dihydroxyarenes (**Scheme I**).

A number of 1,2-diols viz., 9,10-dihydroxyphe-
nanthrene **1a**, 1,2-naphthalenediol **1b**, *cis*-7,8,9,10-
tetrahydrobenzo[a]pyrene-7,8-diol **1c**, *cis*-4,5-
dihydro-4,5-dihydroxypyrene **1d**, 3,5-di-*tert*-
butylcatechol **1e** and some pinacols viz., benzopinacol
1f, 4,4'-dimethylbenzopinacol **1g**, 4,4'-
dichlorobenzopinacol **1h**, 4,4',4",4'''-octamethyl-tetra-
aminobenzopinacol **1i** and fluorenopinacol **1j** were
made to react with KO₂ in the presence of Et₄NBr in
dry DMF at room temperature. As an outcome, under
the mild reactions conditions of Et₄NO₂, the diols **1a-d**
are oxidised to their corresponding dicarboxylic
acids viz., diphenic acid **2a**, phthalic acid **2b**, pyrene-
1,2-dicarboxylic acid **2c** and 4,5-phenanthrene dicar-
boxylic acid **2d** respectively, whereas the pinacols **1f-j**
undergo C-C bond fission providing benzophenone
2f, 4-methylbenzophenone **2g**, 4-chloro-
benzophenone **2h**, 4,4'-bis(dimethylamino)- benzo-
phenone **2i** and fluorenone **2j** respectively in reasona-
bly good yields. Under the same set of conditions, it is
interesting to note that 3,5-di-*tert*-butyl catechol **1e**
affords a mixture of lactones 3,5-di-*tert*-butyl-5-
(carboxymethyl)-2-furanone **2e** and 3,5-di-*tert*-butyl-
5-(carboxyhydroxymethyl)-2-furanone **2e'**. The re-
sults of the investigation are summarised in **Table I**.

The reaction of catechol with *in situ* generated Et₄NO₂ has also been undertaken, although it led to intractable products, possibly due to oxidative coupling. Subsequently, 3,5-di-*tert*-butylcatechol **1e** was used where most of reactive ring sites were blocked by bulky groups, leading to lactones **2e** and **2e'** probably through the dicarboxylic acids, which under-
go lactonisation following the oxidative cleavage at 1,2-positions. The above studies were carried out employing a 4.0 fold excess of KO₂ and 2.0 fold ex-
cess of Et₄NBr over the substrate **1** in dry DMF. When the reaction was complete, as checked by TLC,
saturated aqueous sodium chloride solution was added to destroy the unreacted KO₂. The reaction mixture was then worked up to afford the products. The cleav-
age of diols is assumed to proceed via the intermedia-
ry of diketones and in order to ascertain it, the reac-
tion was carried out employing an equimolar ratio of a
few diols **1a,b,e** and KO₂. The results are given in
Table II. It is worthwhile to mention that the dike-

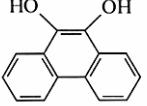
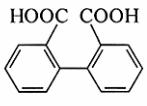
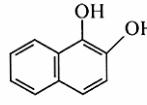
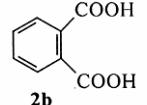
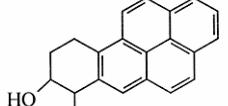
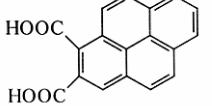
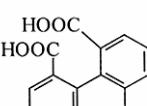
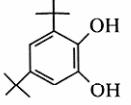
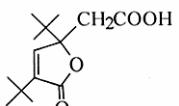
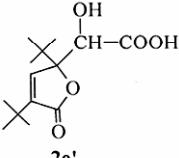
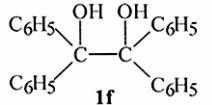
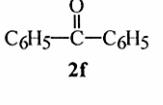
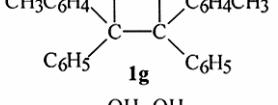
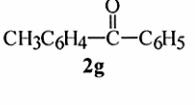
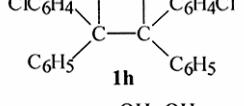
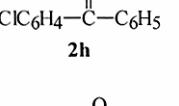
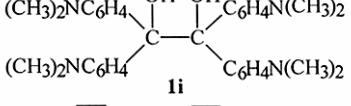
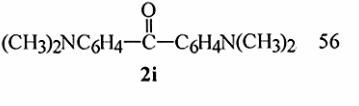
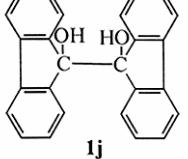
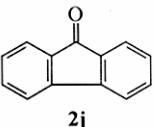
Scheme I

tones, 9,10-phenanthroquinone **3a**, 2-hydroxy-1,4-naphthoquinone **3b** and 3,5-di-*tert*-butyl-*o*-quinone **3e** are isolated although in low yield during these investigations. All the products exhibited physical and spectral data consistent to their structures.

In conclusion, an oxidative cleavage of glycols and related dihydroxyarenes has been accomplished using tetraethylammonium superoxide at room temperature under significantly mild reaction conditions.

Experimental Section

Melting points were measured in open capillaries and are uncorrected. IR spectra were recorded on a JASCO FT/IR-5300 spectrophotometer. NMR spectra were run on a JEOL FT-NMR spectrometer FX-90Q and the chemical shifts are expressed as δ/ppm , using TMS as internal reference. Potassium superoxide and tetraethylammonium bromide were procured from E. Merck, and were used as received. Dry DMF of Aldrich, was stored over molecular sieves (4\AA) prior to use. 9,10-Dihydroxyphenanthrene **1a** was obtained by the reduction of 9,10-phenanthrenequinone with zinc dust in hot acetic acid²⁸. 1,2-Naphthalenediol **1b** and 3,5-di-*tert*-butylcatechol **1e** were commercial products. *cis*-7,8,9,10-Tetrahydrobenzo[*a*]pyrene-7,8-diol **1c** and *cis*-4,5-dihydro-4,5-dihydroxypyrene **1d** were prepared following known methods^{20,21}. The pinacols **1f-j** were obtained by the reduction of corresponding ketones using a mixture of magnesium iodide and magnesium according to a reported method²⁹.





















Reaction of *in situ* generated tetraethylammonium superoxide with diols **1a-j: General procedure.** Potassium superoxide (1.42 g; 0.02 mole) was weighed in a dry capped specimen tube under a nitro-

gen atmosphere and transferred into a two-necked round bottom flask (100 mL) equipped with a gas inlet and double surface condenser guarded with a CaCl_2 drying tube. The flask was flushed with dry nitrogen and to it were admitted anhydrous DMF (40 mL) and Et_4NBr (2.1 g; 0.01 mole). The mixture was stirred magnetically for about 15 min to facilitate the dissolution of the solids. The diol **1** (0.005 mole) was finally introduced and the stirring was continued at room temperature for 15-20 hr in the presence of N_2 until TLC indicated the complete loss of starting material. The mixture was then successively treated with cold brine (10 mL), NaHCO_3 solution (20 mL) and then extracted with diethyl ether (3×20 mL) to give the product **2f-j**. The aqueous phase was acidified with hydrochloric acid and extracted with diethyl ether (3×25 mL). The ethereal layer was washed with water (3×20 mL), dried over anhydrous sodium sulfate, filtered, evaporated and recrystallised to furnish the pure acid **2a-e'**. All the products exhibited physical and spectral data consistent with their structures.

Physical and spectral data of the products: **2a**: m.p. 230°C (ref.30, $228\text{-}29^\circ\text{C}$); Anal. Calcd for $\text{C}_{14}\text{H}_{10}\text{O}_4$: C, 69.4; H, 4.1. Found: C, 69.2; H, 4.2%. IR (KBr): 3100-2500, 1685, 1595, 1578, 1405, 1300, 1270, 915, 762, 715 cm^{-1} ; ^1H NMR ($\text{DMSO-}d_6$, δ): 7.4 (m, 2H, ArH), 7.7 (m, 4H, ArH), 8.1 (m, 2H, ArH), 11.0 (s, 2H, COOH).

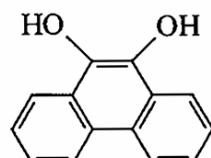
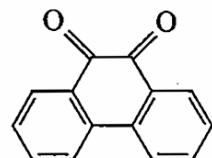
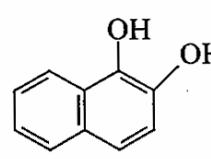
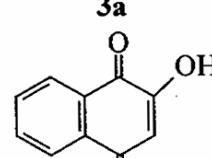
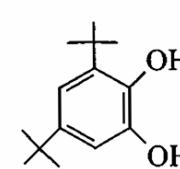
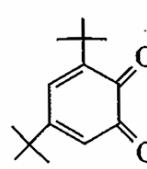






2b: m.p. 225°C (ref.30, 230°C); Anal. Calcd for $\text{C}_8\text{H}_6\text{O}_4$: C, 57.8; H, 3.6. Found: C, 57.7; H, 3.4%. IR (KBr): 3200-2400, 1682, 1585, 1402, 1280, 1070, 907, 798, 740 cm^{-1} ; ^1H NMR ($\text{DMSO-}d_6 + \text{CDCl}_3$, δ):

Table I — Reaction of *in situ* generated Et_4NO_2 with substrate **1a-j**

Substrate 1	Product 2	Yield* (%)
		81
		66
		72
		76
		26
		18
		73
		65
		70
		56
		62

*Isolated mass yields based on substrate **1**.

Table II—Reaction of KO_2 and Et_4NBr with diols **1a,b,e** (equimolar ratio)

Substrate 1	Product 2	Yield* (%)
 1a	 2a	65
 1b	 3a	56
 1e	 3e	51

*Isolated yields are based on substrate **1**

7.8 (m, 2H, ArH), 8.35 (m, 2H, ArH), 11.0 (s, 2H, COOH).

2c: m.p. $>250^\circ\text{C}$ (ref.20, $>300^\circ\text{C}$), Anal. Calcd for $\text{C}_{18}\text{H}_{10}\text{O}_4$: C, 74.5; H, 3.4. Found: C, 74.3; H, 3.7%. IR (KBr): 3100-2500, 1675, 1590, 1445, 1250, 1165, 955, 748, 713 cm^{-1} ; ^1H NMR (DMSO-*d*₆, δ): 7.7 (m, 4H, ArH), 7.9-8.1 (m, 3H, ArH), 8.2 (s, 1H, ArH), 11.1 (s, 2H, COOH).

2d: m.p. 256°C (ref.30, 260°C), Anal. Calcd for $\text{C}_{16}\text{H}_{10}\text{O}_4$: C, 7.2; H, 3.7. Found: C, 72.0; H, 3.6. IR (KBr): 3200-2450, 1681, 1580, 1445, 1243, 1140, 925, 731, 714 cm^{-1} ; ^1H NMR (CDCl₃, δ): 7.6 (m, 2H, ArH), 8.1-8.5 (m, 2H, ArH), 8.8 (m, 2H, ArH), 11.0 (s, 2H, COOH).

2e: m.p. 132°C (ref.31, 133-34°C), Anal. Calcd for $\text{C}_{14}\text{H}_{22}\text{O}_4$: C, 66.1; H, 8.6. Found: C, 65.9; H%, 8.6. IR (KBr): 3300-2700, 1745, 1715, 1635 cm^{-1} ; ^1H NMR (CDCl₃, δ): 1.0-1.2 (s, 18H, CH₃), 2.7 (s, 2H, CH₂), 6.9 (s, 1H, =CH), 8.1-8.5 (m, 2H, ArH).

2e': m.p. 140°C (ref.32, 139-40°C), Anal. Calcd for $\text{C}_{14}\text{H}_{22}\text{O}_5$: C, 62.2; H, 8.1. Found: C, 62.1; H, 8.0%. IR (KBr): 3550-3350, 3250-2750, 1720, 1705, 1630

cm^{-1} ; ^1H NMR (DMSO-*d*₆, δ): 1.1-1.8 (s, 18H, CH₃), 2.5 (s, 1H, OH), 4.7 (s, 1H, CH), 6.7 (s, 1H, =CH), 10.6 (s, 1H, COOH).

2f: m.p. 48°C (ref.30, 49°C), Anal. Calcd for $\text{C}_{13}\text{H}_{10}\text{O}$: C, 85.7; H, 5.5. Found: C, 85.6; H, 5.4%. IR (KBr): 1655, 1595, 1450, 1320, 1280, 765, 705, 695, 640 cm^{-1} ; ^1H NMR (CDCl₃, δ): 7.35-7.45 (m, 6H, ArH), 7.8 (m, 4H, ArH).

2g: m.p. 58°C (ref.30, 59-60°C), Anal. Calcd for $\text{C}_{14}\text{H}_{12}\text{O}$: C, 85.7; H, 6.1. Found: C, 85.65; H, 6.11%. IR (KBr): 1683, 1607, 1358, 1268, 1182, 958, 816 cm^{-1} ; ^1H NMR (CDCl₃, δ): 2.3 (s, 3H, CH₃), 7.2 (m, 2H, ArH), 7.4-7.7 (m, 7H, ArH).

2h: m.p. 76°C (ref.30, 77-78°C), Anal. Calcd for $\text{C}_{13}\text{H}_9\text{OCl}$: C, 72.0; H, 4.1. Found: C, 71.9; H, 4.0%. IR (KBr): 1650, 1584, 1301, 1285, 1090, 845, 728, 695, 664 cm^{-1} ; ^1H NMR (CDCl₃, δ): 7.35-7.45 (m, 5H, ArH), 7.6-7.8 (m, 4H, ArH).

2i: m.p. 171°C (ref.30, 172-72.5°C), Anal. Calcd for $\text{C}_{17}\text{H}_{20}\text{N}_2\text{O}_2$: C, 76.1; H, 7.4; N, 10.4. Found: C, 76.0; H, 7.41; N, 10.36%. IR (KBr): 1595, 1530, 1370, 1325, 1288, 1175, 1150, 920, 765 cm^{-1} ; ^1H

NMR (CDCl_3 , δ): 2.85 (s, 12H, CH_3), 6.8 (dd, 4H, ArH), 7.6 (dd, 4H, ArH).

2j: m.p. 81°C (ref.30, 83-83.5°C), Anal. Calcd for $\text{C}_{13}\text{H}_8\text{O}$: C, 86.6; H, 4.4. Found: C, 86.6; H, 4.4%. IR (KBr): 1715, 1610, 1595, 1450, 1297, 920, 745, 736, 671 cm^{-1} . ^1H NMR (CDCl_3 , δ): 7.3-7.8 (m, 8H, ArH).

3a: m.p. 205°C (ref.30, 208.5-10°C), Anal. Calcd for $\text{C}_{14}\text{H}_8\text{O}_2$: C 80.7; H, 3.8. Found: C, 80.6; H, 3.7%. IR (KBr): 1675, 1590, 1450, 1290, 1280, 1230, 923, 762, 718 cm^{-1} . ^1H NMR (CDCl_3 , δ): 7.1-8.3 (m, 8H, ArH).

3b: m.p. 190°C (ref.33, 192°C), Anal. Calcd for $\text{C}_{10}\text{H}_6\text{O}_3$: C, 68.9; H, 3.4. Found: C, 68.9; H, 3.3%. IR (KBr): 3400-2900, 1661, 1605, 1588, 1331, 1302, 1147, 1117, 863, 771 cm^{-1} . ^1H NMR (CDCl_3 , δ): 6.3 (s, 1H, ArH), 7.7-8.1 (m, 4H, ArH), 11.6 (s, 1H, OH).

3e: m.p. 111°C (ref.34, 111-13°C), Anal. Calcd for $\text{C}_{14}\text{H}_{20}\text{O}_2$: C, 76.3; H, 9.0. Found: C, 76.2; H, 9.0%. IR (KBr): 2964, 1662, 1623, 1568, 1480, 1367, 1275, 1246, 891 cm^{-1} . ^1H NMR (CDCl_3 , δ): 1.3 (s, 18 H, CH_3), 6.5-6.8 (m, 2H, ArH).

Acknowledgement

The authors are thankful to CSIR, New Delhi for financial support.

References

- 1 Perlin A S, in "The Carbohydrates, Chemistry and Biochemistry", W Pigman, D Horton & J D Wonde; eds, (Academic Press : London), Vol. 1B, **1980**, p.1167.
- 2 Mihailovic M L, Cekovic Z & Lorenc L in Organic Synthesis by Oxidation with Metal Compound, W J Mijs & C R H I de Jonge, eds, (Plenum Press, New York), **1986**, p.74.
- 3 Peng K, Chen F, She X, Yang C, Cui Y & Pan X, *Tetrahedron Lett*, **46**, **2005**, 1217.
- 4 Outram H S, Raw S A & Taylor R J K, *Tetrahedron Lett*, **43**, **2002**, 6185.
- 5 Fernandez E M S, Lena J I C, Birlirakis E A N, Barrero A F & Arseniyadis S, *Tetrahedron Asym*, **14**, **2003**, 2277.
- 6 Perlin A S, Oxidation, (Marcel Dekker, New York), **1969**, p. 189.
- 7 Wade, L G, Organic Chemistry, 6th ed, (Prentice Hall, Upper Saddle River, New Jersey), **2005**, pp 358-361, pp 489-490.
- 8 Martin, V S, Palazón, J M, Ruthenium (VIII) Oxide, *Encyclopedia of Reagents for Organic Synthesis*, **2001**.
- 9 Courtney J L & Swansbor K F, Ruthenium tetroxide oxidation, *Reviews of Pure and Applied Chemistry*, **22**, **1972**, 47.
- 10 Jain S L, Sharma V B & Sain B, *Tetrahedron Lett*, **45**, **2004**, 1233.
- 11 Khurana J M & Kandpal B M, *Tetrahedron Lett*, **44**, **2003**, 4909.
- 12 Lena J I C, Sesenoglu O, Birlirakis M N & Arseniyadis S, *Tetrahedron Lett*, **42**, **2001** 21.
- 13 Barrero A F, Alvarez-Manzaneda E J & Chahboun R, *Tetrahedron Lett*, **41**, **2000**, 1959.
- 14 Sato S, Takahashi R, Sodesawa T, Fukuda H, Sekine T & Tsukuda E, *Cat Commun*, **6**, **2005**, 607.
- 15 Biella S, Prati L & Rossi M, *Inorg Chim Acta*, **349**, **2003**, 253.
- 16 Iwahama T, Yoshino Y, Keitoku T, Sakaguchi S & Ishii Y, *J Org Chem*, **65**, **2000**, 6502.
- 17 Sawyer D T & Valentine J S, *Acc Chem Res*, **14**, **1981**, 393.
- 18 San Fillipo (Jr) J & Chern C-I, *J Org Chem*, **41**, **1976**, 1077.
- 19 Sotiriou-Leventis C, Saha M, Fu P P & Giese R W, *Synth Commun*, **23**, **1993**, 97.
- 20 Sotiriou-Leventis C, Lee W & Giese R W, *J Org Chem*, **55**, **1990**, 2159.
- 21 Abdel-Baky S, Sotiriou-Leventis C & Giese R W, *Tetrahedron*, **47**, **1991**, 5667.
- 22 Min M D, Croux S, Tournaire C, Hocquaux M, Jacquet B, Oliveros E & Maurette M T, *Tetrahedron*, **48**, **1992**, 1869.
- 23 Vidrill-Robert D, Maurette M T & Oliveros E, *Tetrahedron Lett*, **25**, **1984**, 529.
- 24 Singh S, Verma M & Singh K N, *Synth Commun*, **34**, **2004**, 4471.
- 25 Singh S & Singh K N, *Synth Commun*, **35**, **2005**, 2597.
- 26 Singh K N & Kumar R, *Indian J Chem*, **44B**, **2005**, 381.
- 27 Shukla A K, Verma M & Singh K N, *Indian J Chem*, **43B**, **2004**, 1748.
- 28 Moro-oka Y & Foote C S, *J Am Chem Soc*, **98**, **1976**, 1510.
- 29 Gomberg M & Bachmann W E, *J Am Chem Soc*, **49**, **1927**, 240.
- 30 Dictionary of Organic Compounds, 4th Edn, (Eyre and Spottiswoode, London), **1965**, p. 348, 603, 1009, 1269, 1441, 2651, 2653, 2731, and 2740.
- 31 Rsuji J & Takayanagi H, *J Am Chem Soc*, **96**, **1974**, 7349.
- 32 Matsuura T, Nishinaga A, Yoshimura N, Arai T, Omura K, Matsushima H, Kato S & Saito I, *Tetrahedron Lett*, **21**, **1969**, 1673.
- 33 Fieser L F, *J Am Chem Soc*, **70**, **1948**, 3165.
- 34 Nishinaga A, Itohara T & Matsuura T, *Bull Chem Soc Jpn*, **47**, **1974**, 1811.